Generation of linear and nonlinear nonparaxial accelerating beams.
نویسندگان
چکیده
We study linear and nonlinear self-accelerating beams propagating along circular trajectories beyond the paraxial approximation. Such nonparaxial accelerating beams are exact solutions of the Helmholtz equation, preserving their shapes during propagation even under nonlinearity. We generate experimentally and observe directly these large-angle bending beams in colloidal suspensions of polystyrene nanoparticles.
منابع مشابه
Nonparaxial Mathieu and Weber accelerating beams.
We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as ...
متن کاملArbitrary nonparaxial accelerating periodic beams and spherical shaping of light.
We report the observation of arbitrary accelerating beams (ABs) designed using a nonparaxial description of optical caustics. We use a spatial light modulator-based setup and techniques of Fourier optics to generate circular and Weber beams subtending over 95 deg of arc. Applying a complementary binary mask also allows the generation of periodic ABs taking the forms of snake-like trajectories, ...
متن کاملNonparaxial self-accelerating beams in an atomic vapor with electromagnetically induced transparency.
We theoretically and numerically investigate the nonparaxial self-accelerating beams in a Λ-type three-level energy system of rubidium atomic vapor in the electromagnetically induced transparency (EIT) window. In the EIT window, the absorption of the atomic vapor is small, and robust nonparaxial self-accelerating beams can be generated. The reason is that the energy of the tail transfers to the...
متن کاملClosed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories.
In this Letter, we propose a general real-space method for the generation of nonparaxial accelerating beams with arbitrary predefined convex trajectories. Our results lead to closed-form expressions for the required phase at the input plane. We present such closed-form results for a variety of caustic curves: beside circular, elliptic, and parabolic, we find for the first time general power-law...
متن کاملArbitrary bending plasmonic light waves.
We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 37 14 شماره
صفحات -
تاریخ انتشار 2012